
Accelerating Packet Processing in Container
Overlay Networks via Packet-level Parallelism
Jiaxin Lei

Binghamton University
Binghamton, NY, USA
jlei23@binghamton.edu

Manish Munikar
The University of Texas at Arlington

Arlington, TX, USA
manish.munikar@mavs.uta.edu

Hui Lu
Binghamton University
Binghamton, NY, USA
huilu@binghamton.edu

Rao Jia
The University of Texas at Arlington

Arlington, TX, USA
jia.rao@uta.edu

Abstract—Overlay networks serve as the de facto network
virtualization technique for providing connectivity among dis-
tributed containers. Despite the flexibility in building customized
private container networks, overlay networks incur significant
performance loss compared to physical networks (i.e., the native).
The culprit lies in the inclusion of multiple network processing
stages in overlay networks, which prolongs the network process-
ing path and overloads CPU cores. In this paper, we propose
MFLOW, a novel packet steering approach to parallelize the
in-kernel data path of network flows. MFLOW exploits packet-
level parallelism in the kernel network stack by splitting the
packets of the same flow into multiple micro-flows, which can
be processed in parallel on multiple cores. MFLOW devises new,
generic mechanisms for flow splitting while preserving in-order
packet delivery with little overhead. Our evaluation with both
micro-benchmarks and real-world applications demonstrates the
effectiveness of MFLOW, with significantly improved performance
– e.g., by 81% in TCP throughput and 139% in UDP compared
to vanilla overlay networks. MFLOW even achieved higher TCP
throughput than the native (e.g., 29.8 vs. 26.6 Gbps).

Index Terms—Packet Processing, Kernel Network Stack, Con-
tainer Overlay Networks

I. INTRODUCTION

Due to high portability, high density, low performance
overhead, and low operational cost, containers have quickly
gained popularity and become adopted by high performance
computing systems (HPC) [1]–[9]. Unlike VMs, containers
achieve lightweight virtualization by running directly on the
host operating systems (OS) – i.e., no guest OSes and virtual
hardware emulation involved – while isolation between con-
tainers remains enforced through kernel-level features such as
namespaces [10], cgroups [11], and seccomp [12].

However, containers are no longer lightweight with regard
to peripheral components, especially for networking. Recent
studies [13]–[15] revealed that compared to the native (i.e.,
no virtualization), containers achieved ∼50% less network
throughput and suffered much higher packet-level processing
latency. The culprit of the poor container network performance
lies in the complexity of constructing network connections:
Containers rely on overlay networks – the de facto network vir-
tualization technique in containers – allowing each container to
have its own network namespace and private IP address while
being independent of the host network. The construction of
overlay networks requires a set of software network devices,
such as VxLAN [16] for packet encapsulation/decapsulation,

veth for virtual network interfaces of containers, and virtual
bridges (e.g., Linux bridge or Open vSwitch [17]) to connect
them. The involvement of multiple software network devices
prolongs the data path of container network packets, inevitably
incurring additional overhead and delays to packet processing
with high CPU usage [13], [15].

Worse, since the Linux kernel typically squeezes all the
processing stages of a single flow on a single CPU core [13],
the computation of packet processing can easily overload
the core, thus throttling the network throughput of the flow.
This negatively impacts the performance and scalability of
many HPC workloads, such as live HD streaming, distributed
machine learning tasks, and big data processing tasks – typi-
cally generating long-lived, high-throughput flows, known as
“elephant” flows. For example, due to such a CPU bottleneck,
distributed machine learning tasks stopped scaling after only
consuming 25 Gbps out of a 100 Gbps network link [18].

This paper investigates how and to which degree in-kernel
packet processing can be optimized to accelerate container
overlay networks. Ideally, the above-mentioned CPU bottle-
neck can be addressed/mitigated if we can effectively convert
any elephant flow into multiple mouse flows, each containing
a small portion of the flow’s packets and being processed
upon a separate core. Several instant benefits are: (1) Each
mouse flow contains fewer packets, thus avoiding overloading
a single core (even for a heavyweight network device); (2)
Packets of different mouse flows can be processed in parallel,
thus accelerating packet processing speed; (3) It can more
efficiently leverage a multi-core system to mix and balance
elephant and mouse flows – i.e., an elephant flow is just
equivalent to a bunch of mice flows.

To seek the feasibility of this idea, we design and develop
MFLOW – a novel approach to parallelize in-kernel data path
of (elephant) flows. MFLOW exploits fine-grained, packet-level
parallelism based on an often overlooked fact: While existing
in-kernel packet processing requires all packets of a single
flow to be processed in a pipelined manner (in sequence), in-
order packet processing does not need to be strictly guaranteed
at all times along the stateless network path, but instead only
when necessary (for the stateful path), e.g., before packets
enter the transport layer (i.e., TCP) or are sent to user-space
applications. Upon this observation, MFLOW achieves packet-
level parallelism by splitting the packets of the same flow



into multiple small batches, called micro-flows, which can
be processed in parallel on multiple cores. MFLOW devises
generic packet steering mechanisms for in-kernel flow splitting
that can be enabled at any point of the stateless network path.

One key challenge to MFLOW lies in that as each CPU core
may have different processing capability and/or be interrupted
by concurrent kernel tasks, packets of different micro-flows
may not preserve their arrival order after parallel processing
– out-of-order packet delivery causes incorrectness (in TCP)
or poor user experiences (in UDP). This is precisely why the
existing in-kernel network stack processes packets in order,
thus only needing to reorder a small number of packets
that are delayed during transmission. Although MFLOW can
leverage the kernel’s packet reordering mechanism to ensure
all packets are still in order after parallel processing, the
packet-level reordering incurs significant overhead. MFLOW
addresses this issue in two ways: (1) by choosing a suitable
batch size for micro-flows, the number of out-of-order packets
can be dramatically reduced; (2) instead of reordering packets
at a per-packet level, MFLOW devises a batch-based flow
reassembling mechanism incurring little overhead.

We know of no other kernel techniques supporting packet-
level parallelism for accelerating container overlay networks.
We have implemented a prototype of MFLOW in the Linux
network stack (with kernel version 5.7). To summarize, in this
paper, we have made the following contributions:

• We perform a detailed investigation of the performance
of container overlay networks and identify the main
performance bottleneck for elephant flows to be the lack
of sufficient network processing parallelism.

• We design and implement MFLOW, which explores
packet-level packet processing parallelism in commodity
OS kernel for fast overlay networks. Unlike existing
approaches that only parallelize packet processing at a
coarse-grained flow/device level, MFLOW allows a flow
to be parallelized at any stateless stage along the network
processing pipeline.

• Our evaluation of MFLOW using both micro-benchmarks
and real-world applications shows that MFLOW can sig-
nificantly improve network throughput (e.g., by 81% in
TCP and 139% in UDP compared to the vanilla overlay
networks) and application-level performance (e.g., by up
to 7.5x for web serving). MFLOW even achieves higher
TCP throughput under container overlay networks than
the native (e.g., 29.8 vs. 26.6 Gbps) due to packet-level
processing parallelism.

Road map: Section II discusses the background and motivates
MFLOW with performance and CPU utilization comparisons
among state-of-the-art overlay network techniques. Section III
presents the design details of MFLOW while Section IV
releases its implementation. Section V shows the experimental
results in comparison with state-of-the-art. Section VI reviews
related works and Section VII concludes the paper with a brief
discussion of future work.

II. BACKGROUND AND MOTIVATION

A. Background

Packet processing: In-kernel packet processing, as illustrated
in Figure 1, involves a complicated pipeline that traverses the
physical network interface controller (pNIC), the kernel space,
and the user space. We use packet reception as an example to
demonstrate the process: When a packet arrives at the pNIC, in
step ➊, it is copied (via DMA) to the kernel ring buffer, and the
pNIC triggers a hardware interrupt (IRQ). The kernel is then
invoked by the IRQ and starts the packet receiving process.
The in-kernel receiving procedure further involves two parts:
the top half and the bottom half.

The top half runs in the context of the IRQ, which simply
marks that there is an incoming packet (in request queues)
waiting for processing and notifies the bottom half (i.e., by
raising a software interrupt). The bottom half is then executed
in the form of a software interrupt (softirq) (in step ➋). It
serves as the main kernel network packet processing routine to
process the packet through a set of network devices (e.g., both
physical and software NICs) and network protocol layers (e.g.,
from layer 2 to layer 3/4). The Linux kernel uses a key data
structure, skb (i.e., socket buffer), to represent each packet
that can be freely manipulated and transferred across these
network devices and layers. After a packet traverses all needed
network devices and protocol layers along its path, it is finally
delivered to the user-space application (in step ➌) — i.e., the
packet data/payloads (stored in the kernel ring buffer) is copied
from the kernel buffer to the user-space application’s buffer.
Container overlay networks: Container overlay networks
hinge on a tunneling technique (e.g., through VxLAN [16]):
When a container sends a packet (with private IPs), the overlay
network encapsulates the packet in a new packet with the
(source and destination) host IPs as the new packet header
and the original packet as payload. When a container receives
a packet, the overlay network decapsulates the received packet
to recover the original packet and delivers it to the target
containerized application using its private IP address.

As illustrated in Figure 2, the Linux kernel constructs the
container overlay network with the help of several in-kernel
software network devices – i.e., a VxLAN network device for
packet encapsulation/decapsulation, a virtual Ethernet device
(veth) for virtual network interfaces of containers, and a
virtual bridge (e.g., Linux bridge or Open vSwitch [17]) to
connect them. Hence, before a container packet is received by
the user-space application, it needs to traverse three software
devices and goes through the network protocol stacks twice
— one for packet decapsulation and one for sending the
decapsulated packet (by veth) to the user-space application.
Throughout the whole process, one IRQ and three softirqs —
i.e., by pNIC, VxLAN, and veth — are raised. Therefore,
compared to the native, the overlay network incurs prolonged
data path with extra processing overhead.
Parallel packet processing: The prolonged data path in
container overlay networks slows down per-packet processing
and consumes more CPU cycles. By default, as the vanilla



pNIC Packets

Ring Buffer

❶ IRQ ❶ DMA

Top Half

❷ softIRQ

Application Application 
Buffer

❸ Data Copy

❸ Packet Delivery

rq1
rq2
rq3
rq4
…
rqn

Request 
Queue(s)

skb1
skb2
skb3
skb4
…

skbn

Packet 
Processing 
Queue(s)pNIC

Network 
stacks

Bottom Half

Fig. 1: In-kernel packet processing.

pNIC Packets

Top Half

Application Application 
Buffer

VXLAN Container 
bridge

Container 
vNIC

Layer2

Layer3

Layer4 Processing 
through 
Protocol 
Stacks

(IP, 
UDP/TCP)

Bottom Half

Packet 
Decaps
ulation

Ring 
Buffer

❶ IRQ
❶ DMA

❷ softIRQ

❸ Packet Delivery

❸ Data 
Copy

pNIC

Fig. 2: Container overlay network.

CPU4

Packet 
Delivery

Bottom
Half

CPU1

Top Half

Top Half

CPU2

Others 
Bottom

Half

VXLAN

Packet 
Delivery

CPU3

vNIC

Packet 
Delivery

Vanilla

RPS

FALCON

pNIC

Top Half

pNIC

Fig. 3: Parallel packet processing.

case shows in Figure 3, the Linux kernel squeezes all stages
of a single flow’s packet processing onto a single CPU core 1.
It is because the Linux network stack has been developed
over the years and originally targeted less-powerful network
devices (e.g., 1/10 Gbps) where a single core was powerful
enough to handle a single network flow. However, in the face
of today’s high-performance, high-throughout network devices
(e.g., 100/400 Gbps), the CPU becomes the bottleneck – i.e.,
packet processing can easily saturate a single core, preventing
a single flow from achieving higher network throughput.

To leverage a multi-core system, both hardware and soft-
ware packet steering approaches have been proposed to par-
allelize packet processing:

(1) Modern physical NICs enable multiple queues and
apply receive side scaling (RSS) [19] to map different flows
to separate cores (via hash values). This achieves inter-flow
parallelism as different flows are associated with distinct hash
values and can be mapped to different cores. Note that, it is
common that one server can have more flows than available
CPU cores; multiple flows might still be mapped to the
same CPU core. The hardware-based parallelism mechanism,
however, does not parallelize a single (elephant) flow, as all
packets from the same flow are assigned with the same hash
value and hence processed on the same core.

(2) Receive packet steering (RPS) [20] in the Linux kernel
is a software implementation of RSS, which realizes packet
steering in the context of the first softirq (raised by pNIC’s
IRQs) and again achieves inter-flow parallelism – i.e., each
flow is identified using a distinct hash value and mapped to
a separate core. As the “RPS” case shows in Figure 3, for a
single flow, RPS only separates the “top half” (as well as the
first softirq) and the remaining “bottom half” onto two cores.

(3) Recent effort, FALCON [13], observed the lack of single-
flow parallelization and enabled device-level and function-
level parallelization for a single flow. As the “FALCON” case
shows in Figure 3, packet processing stages associated with
distinct network devices (pNIC, VxLAN, vNIC, etc.) can

1The kernel thread for packet delivery – i.e., copying data from the kernel
ring buffer to the user-space buffer – is bonded with the core where the
application thread runs; it can run on a separate core other than the in-kernel
packet processing core(s).

be distinguished and placed on separate cores by FALCON.
However, one limitation of FALCON lies in that if a network
device is heavy (e.g., VxLAN), it can still saturate one CPU
core and becomes the bottleneck. Further, the processing of a
network packet in FALCON spans across multiple CPU cores,
resulting in reduced data locality and extra queuing delays.
Last, function-level parallelization in FALCON seems hard-
coded and requires in-depth kernel code analysis.

B. Motivation

Experimental settings: To quantitatively analyze the effec-
tiveness of existing parallel packet processing approaches,
we evaluated the throughput and CPU utilization of the
VxLAN-based overlay network using sockperf [21] (i.e.,
a TCP/UDP traffic generator) between a pair of client and
server machines. The machines were connected with Mellanox
ConnectX-5 EN 100-Gigabit Ethernet adapters. Both the client
and server had sufficient CPU and memory resources. More
details of the configurations are presented in Section V.

Performance analysis: Figure 4 depicts the performance and
CPU utilization comparisons between the native (i.e., no con-
tainers), VxLAN-based container overlay network, RPS [20],
and FALCON [13] using a single flow. We enabled the Linux
kernel’s default RPS mechanism. We downloaded FALCON’s
source code from its Github repository [22] and deployed its
two parallelization approaches – at the device or function level.

Compared to the native, container overlay networks incurred
higher performance overhead with significant performance
drops – 40% for TCP and 80% for UDP under large message
sizes (e.g., 64 KB). The main reason is that: (1) container over-
lay networks entail prolonged data path with more software
network devices as shown in Figure 2; (2) the Linux kernel
by default places all packet processing of these devices on
a single core, which easily overloads the core as indicated
in Figure 4b (the container vanilla case) – softirqs of all
network devices overloaded core one (close to 100%). Note
that, Figure 4b shows average CPU utilization (e.g., over 30
seconds). Although the average CPU% is under 100%, instant
peak CPU% could reach 100% and throttle the performance,
preventing a single flow from achieving higher throughput.



16B 4KB 64KB
Message Size (UDP)

0

5

10

15

20

25

30

35

40

16B 4KB 64KB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (TCP)

Native
Con (vanilla)
RPS
Falcon (device-level)
Falcon (function-level)

(a) Throughput under TCP/UDP.

0 1 2 3 0 1 2 30 1 2 3

Con (vanilla) RPS FALCON (dev) FALCON (func)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

C
P

U
 u

ti
liz

a
ti
o
n

user system softirq idle

Native

0 1 2 3

(b) CPU utilization on separate cores (TCP with 64KB).

Fig. 4: Performance and CPU utilization comparisons between native, container, and parallel optimizations.

Compared to the vanilla overlay case, RPS slightly im-
proved the throughput of container overlay networks – by 6%
for UDP and 24% for TCP under large message sizes (e.g.,
64 KB). It is because, as shown in Figure 4b (the RPS case),
RPS steered part of the softirqs from core one to core two,
making core one capable of serving more packets. However,
core one remained the bottleneck with high CPU usage, as the
heavyweight network device – VxLAN (i.e., part of the first
softirq) – were still processed on core one.

To mitigate this, FALCON [13] distinguished different net-
work devices and dispatched them onto separate cores, namely
the device-level pipelining. As the example in Figure 4 shows,
FALCON dispatched VxLAN to core two and placed the re-
maining devices on core three. In this way, FALCON increased
the UDP throughput of container overlay networks signifi-
cantly — by 80% (compared to vanilla overlay). However, it
was still far below the native (only within 30%), because the
device-level pipelining is still coarse-grained — i.e., a heavy
device/function can still saturate a single core.

Worse, the device-level pipelining merely worked for TCP
with similar performance as RPS (in Figure 4a). The reason
is that, under TCP, heavyweight functions – e.g., per-packet
skb allocation and generic receive offload (GRO) 2 – remained
on core one and overloading it, as depicted in Figure 4b (i.e.,
the FALCON-dev case). To overcome this, the function-level
pipelining in FALCON can further separate these functions
onto separate cores. For example, by dispatching the GRO
function (and all the following softirqs) on core two, FALCON
increased the throughput of TCP – by 20% (compared to RPS).
Meanwhile, core one again was overloaded – now purely
by the skb allocation function (i.e., the FALCON-fun case
in Figure 4b) that cannot be parallelized by FALCON or any
existing approaches.

Summary: Overlay networks incur non-trivial performance
overhead for both TCP and UDP. State-of-the-art approaches
can parallelize packet processing to a certain degree but en-

2GRO reassembles small packets into larger ones to reduce per-packet
processing overhead. We observed that the Linux kernel’s GRO is mainly
effective for TCP connections but not for UDP.

vNIC

CPU5

Packet 
Delivery

CPU1 CPU2/CPU3

VXLAN

CPU4

vNIC

Single 
device 
scaling

Top Half

pNIC

VXLAN’

Packet 
Delivery

VXLAN
Full 
path 

scaling

Top Half VXLAN’ vNIC’

Splitting Merging

Splitting Merging

Parallel 
processing

Parallel 
processing

pNIC

pNIC’

Fig. 5: MFLOW achieves single device scaling or full path
scaling via exploiting packet-level parallelism.

counter new bottlenecks. Hence, the performance of container
overlay networks remains significantly lower than the native.

III. DESIGN OF MFLOW

To exploit in-kernel packet processing parallelism, we de-
sign and develop MFLOW with the key ideas as follows:
Instead of following the long-established pipelined, in-order
processing, MFLOW exploits packet-level parallelism by split-
ting packets of the same flow into multiple small batches,
called micro-flows, each being able to be processed on a
separate core, called splitting cores. By doing this, multiple
micro-flows of the same flow can be processed in paral-
lel along the stateless network path and only reassembled
before entering the stateful processing stage or user-space
applications. As depicted in Figure 5, MFLOW can scale a
heavyweight network device or even the full network path for
a single flow. In the following sections, we present MFLOW’s
splitting mechanisms (in Section III-A) and how MFLOW
efficiently preserves in-order packet delivery (in Section III-B).

A. Flow Splitting

MFLOW does not re-design existing well-tested, mature
kernel network stack, but instead realizes novel packet steer-



skb1
skb2
skb3
skb4
…
skbi

❶ splitting 
queue

Stage 
transition

CPU2

skb5
skb6
skb7
skb8
…
rqm

CPU3

❶ splitting 
queue

CPU1

a single flow

❷ split into 
micro-flows

Heavy device 
(e.g., VxLAN) 

❹ packet 
processing

❸ dispatch

Heavy device 
(e.g., VxLAN) 

❹ packet 
processing

skb5
skb6
skb7
skb8
…
skbn

skb1
skb2
skb3
skb4

micro-
flow 1

micro-
flow 2

❸ dispatch

(a) Flow-splitting function.

rq1
rq2
rq3
rq4
…
rqi

❶ request 
ring buffer

Top Half

First half

CPU2

rq5
rq6
rq7
rq8
…
rqj

CPU3

❶ request 
ring buffer

CPU1

rq5
rq6
rq7
rq8
…
rqn

rq1
rq2
rq3
rq4

driver’s request 
queue

❸
split and 
dispatch 
requests

❷
locate 

requests Second half

Second half
❹ skb

allocation

❹ skb
allocation

❸
split and 
dispatch 
requests

(b) IRQ-splitting function.

CPU4

skb1
skb2
skb3
skb4

...
❶ buffer queue

skb5
skb6
skb7
skb8

...
Next network 

processing stage

CPU2

CPU3

…

skb1❷
Intermediate 

caching

❸ merging

❹ merging

❶ buffer queue
❷

Intermediate 
caching

micro-
flow 1

micro-
flow 2

(c) In-order flow reassembling.

Fig. 6: Design of MFLOW: (a) Flow-splitting function; (b) IRQ-splitting function; and (c) In-order flow reassembling.

ing mechanisms to exploit packet-level parallelism. MFLOW
devises two generic mechanisms for in-kernel flow splitting –
i.e., depending on whether the per-packet skb data structure is
created or not. These splitting mechanisms enable MFLOW to
either split a flow at a very early stage (i.e., right after the first
IRQ) or at any point along the stateless network processing
path (i.e., layer 2/3 and UDP layer).

Splitting mechanism along stateless network path: MFLOW
splits a single flow by leveraging in-kernel stage transition
functions. Specifically, during packet processing, a network
packet – represented in the form of a skb data structure – is
transferred from one processing stage (i.e., a network device)
to another via a stage transition function (e.g., netif_rx).
The stage transition function enqueues the packet (i.e., skb)
into the queue of the device to be processed next on the same
core. In this way, stage transition functions multiplex multiple
stages of the flow in a pipelined manner on the same core –
i.e., once scheduled, each stage can process a batch of packets;
stages are processed in an interleaved manner.

MFLOW re-purposes the stage transition functions into a
flow-splitting function for heavyweight network devices (in
Figure 6a): During network device initialization, for any net-
work device (e.g., VxLAN) that needs the packet-level par-
allelism, MFLOW creates per-core, per-device splitting queues
(➊). During packet processing, before any identified (elephant)
flow enters the heavyweight network device, MFLOW divides
the packets of the flow into multiple small batches (➋). Each
batch is called a micro-flow and covers a portion of the
consecutive packets in the original flow. Then, MFLOW can
select a distinct splitting core for a micro-flow and enqueues
the packets of the micro-flow into its target core’s splitting
queue (➌). Meanwhile, a softirq is raised on the target splitting
core via inter-processor interrupt (IPI). In this way, the bottom
half of the network device will be executed later on all the
involved splitting cores in parallel (➍).

This flow-splitting function works upon the per-packet skb
data structure and can parallelize the processing of any state-

less heavyweight network devices (or functions, e.g., GRO).
However, similar to the “FALCON-func” case in Figure 4, after
MFLOW scales the heavyweight VxLAN device in container
overlay networks via the flow-splitting function, we observed
that the construction of the skb data structure (in the first
stage of packet processing) became a heavy process – i.e., it
overloaded a single core. To scale these heavyweight func-
tions, we need a flow splitting mechanism that works at the
earliest point of the network stack:

Splitting mechanism for the first stage: Splitting the packets
of a flow before skb allocation is challenging due to two
factors: (1) It requires the support of the physical network
device driver to locate raw packets. (2) As there is no skb,
it needs a lightweight data structure to represent each raw
packet, thus being able to dispatch them onto separate cores.
To overcome these, MFLOW devises an IRQ-splitting function
to split/parallelize packet processing at the first stage:

As depicted in Figure 6b, during the initialization of a flow
that needs first stage parallelization, MFLOW creates per-core
request ring buffers on the splitting cores that will parallelize
the first stage processing (➊). Then, the IRQ-splitting function
divides the first stage – i.e., the softirq context of the pNIC
– into two halves. The first half (1) locates the incoming
packet requests from the driver’s request queue (➋) – e.g.,
each request represents an incoming packet and contains
information for the skb creation; (2) dispatches the requests
onto target cores (➌) – similar to the above micro-flow based
dispatching 3; and (3) raises softirqs on target splitting cores
(via IPIs). Finally, the second half will be invoked on the
splitting cores to finish the remaining part of the original
first stage – e.g., skb allocation (➍). With this, MFLOW can
split and scale heavyweight functions at the earliest network
software point by taking advantage of multiple cores. Note
that, the design of the IRQ-splitting function relies little on

3Note that the IRQ-splitting function dispatches packet requests rather than
skbs; it relies on the data structure of packet requests, created by device
drivers, to represent each raw packet, hence being lightweight.



0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

2 5 10 50 100 1000

O
u
t-

o
f-

o
rd

e
r 

n
u

m
b

e
r

Batch size

Vanilla

Pipelining

2-core splitting

Fig. 7: Number of out-of-order packet delivery vs. batch size
of micro-flows (TCP with 64KB packets).

a specific network device driver – i.e., it only needs to know
the driver’s request queue and the way to locate its requests –
making it portable to different network devices.
Parameters for packet-level parallelism: The degree of
packet-level parallelism in MFLOW is mainly determined by:
(1) the number of outstanding packets; (2) the batch size of
micro-flows; and (3) the number of splitting cores. We discuss
the implications of each parameter as follows:

For both TCP and UDP workloads, a number of outstanding
packets could arrive at the receiver side approximately at
the same time, especially for elephant flows. For example,
given a TCP connection under the throughput of ∼ 30 Gbps,
the sender (e.g., iperf3 [23]) can issue ∼2,000 outstanding
packets (with the size of MTU being 1,500 bytes) without
receiving an ACK from the receiver. As there is no acknowl-
edgment mechanism in UDP, a sender theoretically can issue
as many outstanding packets as possible to the receiver.4 As
the outstanding packets arrive at the receiver approximately at
the same time, dispatching them onto multiple cores enables
packet-level parallelism. Therefore, the “heavier” a flow is,
the more outstanding packets it produces and the higher the
packet-level parallelism degree can be exploited.

Simply dispatching the outstanding packets of the same
flow onto multiple cores may cause out-of-order delivery as
different cores may not have a uniform processing speed.
Though MFLOW’s flow reassembling mechanism (detailed in
Section III-B) eventually preserves packet orders, more out-of-
order delivery means additional effort for order preservation.

We observed that, in Figure 7, the number of out-of-order
delivery after splitting reduced significantly as the batch size
of micro-flows increased. When the batch size was set to
256 or above, little overhead was incurred for packet order
preservation in MFLOW. Having a large batch size also pre-
serves optimizations in packet processing. For example, GRO
reassembles small packets into larger ones, thus reducing the
number of packets to be processed. GRO can merge more
consecutive small packets given a larger batch size. Batch size
also has implications on load distribution: If all micro-flows

4Practical UDP workloads implement congestion control upon the UDP
protocol, which adjusts sending rate based on the observed quality of service
such as packet loss, delay, jitter, etc.

have the same batch size and MFLOW evenly distributes them
on multiple splitting cores, CPU utilization of each core would
be similar (as packets go through similar processing).

Ideally, MFLOW can leverage as many cores as possible to
exploit packet-level parallelism. However, in practice, the per-
formance benefit may diminish as the core number increases
due to multiple factors, such as the number of outstanding
packets, batch size, queuing delay, and reassembling overhead.
Our evaluation (in Section V) shows that using two cores
for parallel packet processing greatly accelerates container
overlay networks performance – e.g., even higher than the
vanilla native case. Further, as the original packet processing
bottleneck has been mitigated by MFLOW, a new bottleneck
arises due to data copying from the kernel to the user-space
application. We will discuss this issue in detail in Section V.

B. Flow Reassembling

A key design goal of MFLOW is not to involve out-of-order
packet delivery due to MFLOW’s splitting mechanisms and
parallel processing. We note that splitting a single flow into
micro-flows ensures that packets in each micro-flow naturally
preserve their arrival orders. However, since each core may
have different processing capability and/or be interrupted by
other concurrent kernel tasks, packets of different micro-flows
may not preserve their arrival orders after parallel processing.

To preserve the original sequences of micro-flows, MFLOW
devises an efficient batch-based flow reassembling mecha-
nism. As depicted in Figure 6c, for heavyweight network de-
vices (or functions) that need packet-level parallelism, MFLOW
creates per-core, per-device buffer queues (➊). Then, for
each splitting core that finishes the processing of a packet,
it enqueues the packet to its buffer queue (➋), instead of
directly sending it to the next processing stage. Meanwhile,
each micro-flow is associated with an identifier which is
incremented based on the position of the micro-flow in the
original flow 5. In other words, the ID reflects each micro-
flow’s order in the original flow. MFLOW uses a global merging
counter to keep track of the ID of the micro-flow being
merged. To merge a micro-flow, MFLOW (1) locates the buffer
queue that stores the packets having the ID same as the
merging counter; (2) fetches the packets from the buffer queue;
and (3) sends them to the next processing queue/stage (➌
and ➍). MFLOW keeps consuming packets from the same
buffer queue until the next packet stores a different ID than
the merging counter, indicating that MFLOW should move to
consume the next micro-flow. After MFLOW increments the
merging counter, it repeats step (1).

MFLOW’s batch-based flow reassembling approach has the
following advantages: (1) The per-core, per-device buffer
queues (used to cache intermediate micro-flows) ensure that
each core can keep processing packets without being blocked
by the merging process. (2) Packets are “re-ordered” on a per-
batch basis, which is extremely efficient, especially compared
to the kernel’s existing per-packet reordering mechanism using

5MFLOW stores the ID information in each packet’s skb data structure.



an out-of-order queue. It also indicates that using a large batch
size can significantly reduce merging overhead – i.e., MFLOW
does not need to frequently switch between buffer queues to
locate the next micro-flow.

Note that, although it makes intuitive sense to merge micro-
flows right after a heavy device/function and before the next
processing stage, we find that micro-flows can actually be
merged as late as possible as long as the following packet
processing is stateless (i.e., no inter-packet processing de-
pendency). For example, for UDP flows, micro-flows can be
merged right before being delivered to user-space applications.
The advantages for the late merging are as follows: (1)
MFLOW can reuse existing in-kernel backlog queues 6 as
buffer queues with reduced queuing delay. (2) MFLOW can
parallelize the full packet processing path with fewer splitting
cores (in Figure 5). (3) Packets are being processed on the
same core with good data locality.

IV. IMPLEMENTATION

We have implemented MFLOW on the Linux network stack
with kernel version 5.7 (∼600 LoC of addition or modifica-
tion) with the focus on the presented splitting and reassembling
mechanisms as stated in Section III. MFLOW is available at:
https://github.com/jlei23/mflow.git.

Flow-splitting function: MFLOW implements the flow-
splitting function by re-purposing a state transition function,
netif_rx. Originally, such a state transition function en-
queues a packet (i.e., its skb) into the current core’s backlog
queue for future processing on the same core. MFLOW, instead,
splits received packets of a flow – that requires packet-level
parallelism for a heavy network device – into micro-flows (➋
in Figure 6a) and enqueues each micro-flow’s packets onto
one selected splitting core (➌ in Figure 6a). MFLOW creates
and associates the per-core, per-device splitting queues to the
device’s NAPI structure napi_struct (➊ in Figure 6a),
which can be easily accessed by the network device’s softirq
handler once executed on the splitting cores (➍ in Figure 6a).
IRQ-splitting function: MFLOW implements the IRQ-
splitting function in the Mellanox NIC driver – its softirq
handler (mlx5e_napi_poll). The IRQ-splitting func-
tion relies on two inputs from the driver code: a re-
quest queue (mlx5e_rq), and the way to retrieve re-
quests (mlx5e_poll_rx_cq) (➋ in Figure 6b). With this,
MFLOW, once enabled, can retrieve any available incom-
ing packet requests in the context of the physical NIC’s
softirqs and dispatch them onto selected splitting cores (➌
in Figure 6b). MFLOW creates and associates the per-core
request buffer to Linux kernel’s per-core data structure,
softnet_data, which can be easily accessed in a softirq
context (➊ in Figure 6b). MFLOW implements the second half
(➍ in Figure 6b) as a regular softirq handler (scheduled by
kernel’s NAPI scheduler and executed on the splitting cores).

6In delivering packets to a user application, the kernel uses a backlog queue
to store packets temporarily while the receive queue is being used by the
application’s receiving thread.

The second half can be processed in parallel most of the time
except when it needs to update the driver that a packet request
has been consumed (i.e., after its skb has been created) and
can be released (i.e., can be reused for another incoming
request). To reduce any possible contention, MFLOW updates
the driver once in a while (e.g., every 128 requests).
Flow reassembling: The implementation of batch-based flow
reassembling uses two queues – the backlog queue for receiv-
ing packets from the previous network processing stage and the
receive queue for delivering packets to user-space applications.
Under UDP, sk_receive_queue serves as the backlog
queue, while reader_queue serves as the receive queue.
Under TCP, sk_backlog serves as the backlog queue, while
sk_receive_queue serves as the receive queue. MFLOW
extends the backlog queue into per-core buffer queues (➊
in Figure 6c), with each serving one splitting core. Thus,
all packets from the previous stage are first cached in the
buffer queues (➋ in Figure 6c) before merging. MFLOW does
not create a new kernel thread for executing the merging
functionality (Section III-B). Instead, it adds the merging
functionality in the existing kernel thread for packet delivery,
i.e., tcp_recvmsg for TCP and udp_recvmsg for UDP
(➌ and ➍ in Figure 6c). These threads will be woken up
when new packets arrive, during which MFLOW checks which
micro-flow’s packets should be merged.

V. EVALUATION

We have evaluated the effectiveness of MFLOW. Results
with micro-benchmarks demonstrate that: (1) MFLOW signif-
icantly improves the throughput of an elephant single flow
– by 81% for TCP and 139% for UDP compared to vanilla
overlay networks; (2) MFLOW achieves even higher throughput
than the native under TCP (29.8 vs. 26.6 Gbps); (3) MFLOW
reduces average and tail latency for both TCP and UDP.
Results with real-world applications demonstrate significant
application-level performance benefits brought by MFLOW–
the performance of a web serving application increases by up
to 7.5x, while the latency of a data caching application reduces
by up to 48%, compared to vanilla overlay networks.
Experimental configurations. The experiments were per-
formed on two PowerEdge R740XD servers, each with 2×16-
core Intel Xeon Gold 5218 processors (2.30 GHz) and 384 GB
memory. The two machines were connected directly by Mel-
lanox ConnectX-5 EN 100-Gigabit Ethernet. We used Ubuntu
20.04 (with the kernel version 5.7) as the host OSes and the
Docker overlay network mode (with Docker version 19.03) as
the container overlay network. Docker overlay network uses
Linux’s builtin VxLAN. We evaluated the following cases:
(1) native: the physical host network (i.e., no containers); (2)
vanilla overlay: containers with the default docker overlay
network (VxLAN); (3) RPS: containers with Linux RPS [20]
enabled; (4) FALCON: containers with FALCON [22] enabled
– the state-of-the-art in-kernel parallelization optimization for
container networks; and (5) MFLOW.

For MFLOW, unless otherwise specified, we set the batch
size to 256 and the number of splitting cores to 2, evenly



0

5

10

15

20

25

30

35

40

16B 4KB 64KB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (TCP)

Native
Con (vanilla)
RPS
Falcon
mFlow

16B 4KB 64KB
Message Size (UDP)

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

C
P

U
 u

ti
liz

a
ti
o
n

TCP (64 KB)

user system
softirq idle

0 1 2 3

UDP (64 KB)

CPU5

CPU1

CPU2

CPU4

CPU3

CPU0

Full path scaling (TCP)

CPU1

CPU2 CPU3

CPU0

Device scaling (UDP)

(b)
Fig. 8: (a) Performance comparisons between state-of-the-art approaches and MFLOW. (b) CPU utilization breakdown.

50% 90% 99% 99.99%
UDP Percentile

0

200

400

600

800

1000

1200

50% 90% 99% 99.99%

La
te

nc
y 

(u
s)

TCP Percentile

native
Con (vanilla)
RPS
Falcon
mFlow

(a) Message size: 16B

0

200

400

600

800

1000

1200

1400

1600

1800

50% 90% 99% 99.99%

La
te

nc
y 

(u
s)

TCP Percentile
50% 90% 99% 99.99%

UDP Percentile

(b) Message size: 4KB

0

200

400

600

800

1000

1200

1400

1600

50% 90% 99% 99.99%

La
te

nc
y 

(u
s)

TCP Percentile
50% 90% 99% 99.99%

UDP Percentile

(c) Message size: 64KB

Fig. 9: Latency comparisons between state-of-the-art approaches and MFLOW under different message sizes.

distributed micro-flows to the splitting cores and enabled full
path scaling for TCP and device scaling for UDP (in Figure 5).
For all tests, CPU and memory resources were sufficient. All
experiments were run multiple times to mitigate variation.

A. Micro-benchmarks

Single-flow throughput: To measure the throughput of a
single flow, we used sockperf [21] to generate traffic with
various message sizes. Note that when a message is larger than
MTU (1,500 bytes), it will be fragmented into multiple packets
during transmission. For TCP, we used a pair of sockperf
client and server. However, the client under UDP was often
bottlenecked (i.e., overloading a CPU core). Hence, similar to
FALCON [13], we used three sockperf clients to send traffic
to one sockperf server to stress the network stack on the
receiver side to its limit for a UDP flow.

In Figure 8a, MFLOW improved the throughput of a single
flow significantly, especially with large message sizes (e.g.,
64 KB), by 81% for TCP and 139% for UDP, compared to
vanilla overlay. Under TCP, MFLOW even achieved higher
throughput than the native – 29.8 Gbps vs. 26.6 Gbps. It
is because although the native network was much simpler
than overlay network, a single core (for skb_allocation)
was overloaded at the high throughput. In contrast, MFLOW
leveraged multiple cores to process a single flow in parallel.
For UDP (under 64 KB), MFLOW achieved lower throughput
than the native. The reason is that, under UDP, the clients were
throttled after they overloaded client-side CPU cores.

Compared to FALCON, MFLOW achieved 22% more
throughput under TCP and 21% more under UDP (with 64

KB). It indicates that exploiting packet-level parallelism can
keep pushing the in-kernel network stack to achieve higher
network performance. For UDP under small message/packet
size (16B), MFLOW achieved even higher performance than
FALCON – more than 40%. For TCP with a small packet size
(16B), both FALCON and MFLOW did not help much (similar
to the vanilla overlay). This is because the TCP client became
the bottleneck. This also indicates that further optimization
focus should be placed on the sender side.
Single-flow splitting and CPU utilization: Figure 8b shows
how MFLOW splits the TCP and UDP flows and the breakdown
of average CPU utilization on each core (with 64 KB).

For TCP, we tested MFLOW’s full path scaling scenario –
i.e., splitting occurred in the first stage and merging occurred
before packets entered the stateful TCP transport layer. Core
one was used for dispatching raw packet requests to two
separate cores – splitting core two and three. We noticed that,
if all network processings were placed on one splitting core,
the splitting core was easily overloaded (as MFLOW increased
TCP throughput significantly). Hence, to scale the perfor-
mance of a single TCP flow, we further split and pipelined
the processings on two cores for each parallel branch – i.e.,
we used core two only for skb allocation and dispatched the
remaining processings on core four. The same configuration
was applied to core three and five. With this, MFLOW achieved
extremely high TCP throughput for container overlay network
as shown in Figure 8a. Now, we observe that core zero – upon
which a single kernel thread copies data from the kernel ring
buffer to the user-space application – was fully utilized and
became the new bottleneck.



0

1

2

3

4

5

6

7

8

9

10

1 5 10 20

Th
ro

ug
hp

ut
 (G

bp
s)

Number of flows

Native
Con (vanilla)
RPS
Falcon
mFlow

(a) Message Size: 16B

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20
Number of flows

(b) Message Size: 4KB

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20
Number of flows

(c) Message Size: 64KB
Fig. 10: Accumulated network throughput with multiple TCP flows under different packet sizes.

0

1

2

3

4

5

6

7

8

9

10

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

Lo
go
ut

Up
da
te
Ac
tiv
it

Re
ce
ive
Ch
at
M
es
sa
geR

el
at

iv
e 

no
. o

f o
pe

ra
tio

ns

Con (vanilla)
Falcon
mFlow

(a) Success operation.

0

0.2

0.4

0.6

0.8

1

1.2

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

Lo
go
ut

Up
da
te
Ac
tiv
it

Re
ce
ive
Ch
at
M
es
sa
ge

R
el

at
iv

e 
re

sp
on

se
 ti

m
e

(b) Average response time.

0

0.2

0.4

0.6

0.8

1

1.2

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

R
el

at
iv

e 
de

la
y 

tim
e

(c) Average delay time.

Fig. 11: MFLOW improves the throughput of a web serving application with reduced response time.

For UDP, we tested MFLOW’s single device scaling sce-
nario – i.e., splitting occurred before the heavyweight VxLAN
device and merging occurred before packets were copied to
applications. As shown in Figure 8b, we placed all network
devices after VxLAN on the same core as they consumed way
less CPU utilization. Core one was used for the first stage
and dispatching packets in the form of skbs to two separate
cores – splitting core two and three. With this configuration,
MFLOW achieved higher UDP throughput than FALCON for
container overlay network (Figure 8a). We noticed that none
of these cores were fully utilized. Instead, the three clients
overloaded their sender-side cores and were the bottleneck.

Single-flow latency: Figure 9 depicts the per-packet latency
of a single TCP or UDP flow with various message sizes.
We measured the latency in the “overloaded” scenario (using
sockperf), in which each case was driven to its maximum
throughput before packet drops occurred. We observe that,
under all cases, MFLOW reduced per-packet processing latency
compared to vanilla overlay, RPS, and FALCON. For example
with 64 KB, compared to vanilla overlay, MFLOW reduced the
median latency by ∼46% and 99th percentile latency by ∼21%
for TCP. It is because MFLOW’s packet-level parallelism
reduces the latency resulting from the pipelined processing
(i.e., the processing of the following packet depends on the
completion of its previous packet). We observe that there

remained a gap in latency between MFLOW and the native
due to prolonged data path in container overlay networks.
Multi-flow testing: We further conducted multi-flow tests –
i.e., multiple flows co-existed within the same host machine.
Since for UDP, clients were the main bottlenecks preventing
MFLOW from saturating available network bandwidth, we
showed the multi-flow TCP case in Figure 10. The message
sizes were set to 16 B, 4 KB, and 64 KB, and the number of
flows varied from 1 to 20. In all tests, we used 5 dedicated
cores for application threads and 10 dedicated cores for
all in-kernel packet processing to have a more controlled
experimental environment for the ease of result analysis.

In Figure 10, with the small message/packet size (i.e., 16
B), all test cases scaled linearly, as the client side became
the bottleneck. With the larger message/packet sizes (i.e., 4
KB and 64 KB), MFLOW consistently outperformed vanilla
overlay – e.g., by 24% with 5 concurrent flows (under 4
KB). This benefit shrank as more flows were added – e.g.,
by 11% with 10 flows and by 5% under 20 flows. It is
because as the flow number increased, there was little CPU
resource to scale up MFLOW. This can be further verified with
the comparison between FALCON and MFLOW – MFLOW
outperformed FALCON by 5% with 10 concurrent flows (with
64 KB) while they achieved the same performance with 20
flows, where CPU was the bottleneck.



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
PU

 U
til

iz
at

io
n

Core number 

Falcon mFlow

Fig. 12: MFLOW uses CPU cores in a more balanced manner.

0

50

100

150

200

250

300

Avg 90% 95% 99%

La
te

nc
y 

(u
s)

1 Client (Con) 1 Client (Falcon)
1 Client (mFlow) 10 Clients (Con)
10 Clients (Falcon) 10 Clients (mFlow)

Fig. 13: MFLOW reduces the average and tail latency of a data
caching application (Memcached).

MFLOW overhead: Figure 12 shows the average CPU load
distribution among all used cores for the multiple TCP flow
case (with 10 flows under 64 KB). More fine-grained flow
steering in MFLOW does incur additional overhead – compared
to FALCON, MFLOW consumed 15% more CPU utilization
(among 10 cores for packet processing) in exchange for 5%
performance gains. However, this is the worst-case scenario.
We observed less than 5% additional overhead with 5 flows
and the same CPU utilization with 20 flows (the system was
overloaded). On the other hand, the advantage of MFLOW
lies in that, in Figure 12, MFLOW can leverage CPU cores
in a more balanced manner with even load distribution. In
contrast, CPU utilization variation under FALCON was larger
than MFLOW – i.e., the standard deviation of CPU utilization
among 10 cores was 20.5 (FALCON) vs. 11.6 (MFLOW).

B. Applications

In this section, we use two representative real-world appli-
cations, web serving and data caching, to evaluate MFLOW.
Web serving: We measured the performance of Cloudsuite’s
Web Serving benchmark [24] under vanilla overlay, FALCON,
and MFLOW. Cloudsuite’s Web Serving – the benchmark to
evaluate page load throughput and access latency – contains
four components: an nginx web server, a mysql database,
a memcached server, and clients. The web server runs the

Elgg [25] social network and connects to the cache and
database servers. The clients send different types of request
workloads, including login, chat, update, etc., to the web
server. In our experiments, all of the services were performed
inside containers that were connected via the Docker overlay
network upon the 100 Gbps NIC.

Figure 11a depicts the “success operation” rate when we
ran the benchmark with 200 users. We observe that MFLOW
improved the successful individual operation rate by 2.3x
– 7.5x compared to the vanilla overlay network. For the
same metric, MFLOW outperformed FALCON by 1.5x – 3.6x.
Figure 11b and Figure 11c present the average response time
and delay time for different operations. The response time
denotes the time to complete one request while the delay
time represents the difference between the target and actual
processing time. Compared to the vanilla overlay network,
MFLOW reduced the average response time by 35% – 65%
while the average delay time by up to 75%. Compared to
FALCON, MFLOW reduced the average response time by 22%
– 54% and the average delay time by 36% – 73%.
Data caching: We further measured the average and tail
latency using Cloudsuite’s data caching benchmark. It uses
the Memcached data caching server, simulating the behavior
of a Twitter caching server with a Twitter dataset. In our
experiments, the Memcached server was configured with 4GB
memory, 4 threads, and 550 bytes object size. The Memcached
server and clients were running under the same Docker overlay
network. As illustrated in Figure 13, compared to the vanilla
overlay network, MFLOW reduced the tail latency (99th per-
centile latency) by 26% when we used one client. When the
number of clients increased to ten, MFLOW’s benefit became
more significant – reducing the average and tail latency by
48% and 47% (99th percentile). It is because, as the number of
clients (and the request rate) increased, the in-kernel network
stack was more stressed. MFLOW improved its efficiency by
using multiple cores for parallel packet processing. In addition,
compared to FALCON, MFLOW reduced the average latency by
22% and tail latency (99th percentile) by 33%, demonstrating
a higher degree of packet processing parallelism.

VI. RELATED WORK

There is a large body of work aimed at optimizing the
in-kernel network stack for efficient packet processing. Fo-
cus has been on eliminating redundant data copy [26]–[29],
improving interrupt locality [26], [28], [30], [31] and load
balance [30], and alleviating packet processing overhead via
interrupt coalescing [32] and system call batching [33]. How-
ever, some work reported that both latency and throughput are
still many times worse than the hardware can achieve [28],
[34]. Some other papers proposed lightweight and customized
network stacks [34]–[39] to improve the network performance.
However, such designs require changes to the application-
kernel interface, not compatible with legacy applications.
Alternatively, research has shifted to bypass the OS kernel
and implements the network stack entirely in user space [37],
[40], [41]. Benefits of user-space approaches include a reduced



number of context switches and direct hardware access that
eliminates much of the indirection and overhead in the kernel.
Intel’s Data Plane Development Kit (DPDK) [40] is one such
example of user-space libraries. In contrast, MFLOW does
not re-design in-kernel network stacks but instead focuses
on exploiting network processing parallelization at the packet
level for container overlay networks. Hence, MFLOW preserves
the current design of overlay networks and retains all existing
network management tools.

To address the inefficiencies of container overlay networks,
recent work seeks to either eliminate packet transformation
from the network stack or parallelize packet processing. For
example, Slim [15] can bypass the virtual bridge and the
virtual network device in containers, achieving near-native
performance. However, Slim does not apply to connection-
less protocols, such as UDP, and limits the scalability of
host network management as each Slim overlay network
connection needs a unique file descriptor and port created in
the host network. FALCON [13] parallelizes packet processing
in container overlay networks by pipelining software interrupts
associated with different network devices of a single flow on
multiple cores — achieving device-level parallelism. In con-
trast, MFLOW investigates unexploited packet-level parallelism
in the kernel network stack.

VII. CONCLUSIONS

We have presented MFLOW, a novel in-kernel packet steer-
ing approach to accelerate container overlay networks by
exploiting packet-level parallelism. MFLOW splits the packets
of a single flow into multiple micro-flows and processes them
in parallel by taking advantage of a multi-core system while
efficiently preserving in-order packet delivery. Our evaluation
with both micro-benchmarks and applications demonstrates
the effectiveness of MFLOW. Meanwhile, the results have
revealed new bottlenecks that prevent a single flow from
further scaling: One lies in clients/senders and the other is the
receiver-side single data-copying thread. We seek to address
these bottlenecks in our future work.

REFERENCES

[1] N. Zhou, Y. Georgiou, M. Pospieszny, L. Zhong, H. Zhou, C. Nietham-
mer, B. Pejak, O. Marko, and D. Hoppe, “Container orchestration on
hpc systems through kubernetes,” J. Cloud Comput., 2021.

[2] C. Cérin, N. Greneche, and T. Menouer, “Towards pervasive container-
ization of hpc job schedulers,” in SBAC-PAD, 2020.

[3] G. Li, J. Woo, and S. B. Lim, “Hpc cloud architecture to reduce hpc
workflow complexity in containerized environments,” Applied Sciences,
vol. 11, no. 3, p. 923, 2021.

[4] Y. Zhou, B. Subramaniam, K. Keahey, and J. Lange, “Comparison
of virtualization and containerization techniques for high performance
computing,” in ACM/IEEE Supercomputing, 2015.

[5] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, G. Morgan,
and R. Ranjan, “A study on the evaluation of hpc microservices in
containerized environment,” Concurrency and Computation: Practice
and Experience, 2021.

[6] S. Herbein, A. Dusia, A. Landwehr, S. McDaniel, J. Monsalve, Y. Yang,
S. R. Seelam, and M. Taufer, “Resource management for running hpc
applications in container clouds,” in HPC, 2016.

[7] A. Ruhela, M. Vaughn, S. L. Harrell, G. J. Zynda, J. Fonner, R. T. Evans,
and T. Minyard, “Containerization on petascale hpc clusters,” in HPC,
2020.

[8] A. Torrez, T. Randles, and R. Priedhorsky, “Hpc container runtimes have
minimal or no performance impact,” in ANOPIE-HPC, 2019.

[9] M. Höb and D. Kranzlmüller, “Enabling easey deployment of container-
ized applications for future hpc systems,” in International Conference
on Computational Science, 2020.

[10] “Separation Anxiety: A Tutorial for Isolating Your System with
Linux Namespaces,” https://www.toptal.com/linux/separation-anxiety-
isolating-your-system-with-linux-namespaces.

[11] “Linux control groups,” ”https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt”.

[12] “Seccomp security profiles for docker,”
”https://docs.docker.com/engine/security/seccomp/”.

[13] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet
processing in container overlay networks,” in EuroSys’21, 2021.

[14] J. Lei, K. Suo, H. Lu, and J. Rao, “Tackling parallelization challenges
of kernel network stack for container overlay networks,” in HotCloud,
2019.

[15] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson, “Slim: OS kernel support for a Low-Overhead con-
tainer overlay network,” in NSDI’19, 2019.

[16] Virtual eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks,
https://datatracker.ietf.org/doc/html/rfc7348.

[17] Open vSwitch, http://openvswitch.org/.
[18] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, “Is network

the bottleneck of distributed training?” in NetAI ’20, 2020.
[19] “Receive side scaling (rss),” ”https://rb.gy/hmjbaj”.
[20] Receive Packet Steering, https://lwn.net/Articles/362339/.
[21] Sockperf, https://github.com/Mellanox/sockperf.
[22] Falcon github, https://github.com/munikarmanish/falcon.
[23] iPerf, https://iperf.fr/.
[24] cloudsuite, https://cloudsuite.ch.
[25] Elgg, https://elgg.org.
[26] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz,

and S. K. Reinhardt, “Performance analysis of system overheads in tcp/ip
workloads,” in PACT’ 05, 2005.

[27] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” in ASPLOS’13, 2013.

[28] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” 2014.

[29] L. Rizzo, “netmap: a novel framework for fast packet i/o,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 101–
112.

[30] L. Cheng and C.-L. Wang, “vbalance: using interrupt load balance to
improve i/o performance for smp virtual machines,” in SoCC’12, 2012.

[31] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “Eli: bare-metal performance for i/o virtualization,”
in ASPLOS’12, 2012.

[32] “Performance tuning for mellanox adapters,”
https://community.mellanox.com/docs/DOC-2489.

[33] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with
exception-less system calls,” in OSDI’10, 2010.

[34] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” in OSDI’14, 2014.

[35] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li, “Los: A
high performance and compatible user-level network operating system,”
in APNet’17, 2017.

[36] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: A
reusable networking stack for flow monitoring middleboxes.” in USENIX
NSDI, 2017.

[37] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mtcp: a highly scalable user-level tcp stack for multicore
systems.” in USENIX NSDI, 2014.

[38] Z. Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein,
“Network stack as a service in the cloud,” in HotNets, 2017.

[39] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
in CoNEXT, 2012.

[40] DPDK, http://dpdk.org/.
[41] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,

and F. Huici, “Clickos and the art of network function virtualization,”
in USENIX NSDI’14, 2014.


